Albumin binding and ligand-exchange processes of the Ru(III) anticancer agent NAMI-A and its bis-DMSO analogue determined by ENDOR spectroscopy.

نویسندگان

  • Michael I Webb
  • Charles J Walsby
چکیده

The ruthenium anticancer compound NAMI-A, imidazolium [trans-RuCl4(1H-imidazole)(DMSO-S)], is currently undergoing advanced clinical evaluation. As with other Ru(iii) chemotherapeutic candidates, interactions with human serum albumin (HSA) have been identified as a key component of the speciation of NAMI-A following intravenous administration. To characterize coordination to HSA, we have performed electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopic analysis of deuterium-labelled isotopologues of both NAMI-A and its bis-DMSO analogue, [(DMSO)2H][trans-RuCl4(DMSO-S)2] (Ru-bis-DMSO). Samples were prepared using phosphate buffered saline, in the presence of HSA, and with the individual amino acids histidine, cysteine, and alanine. Analysis of (1)H ENDOR spectra shows characteristic hyperfine interactions from DMSO, water, and imidazole ligands. Furthermore, coordination of imidazole ligands was confirmed from diagnostic (14)N ENDOR signals. Combined with the EPR data from the complexes following incubation in the presence of histidine, the ENDOR data demonstrate that both complexes bind to HSA via histidine imidazoles. Furthermore, the protein-bound species are shown to have water ligands and, in the case of Ru-bis-DMSO, one species has a remaining coordinated DMSO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of ligand-exchange processes and the oxidation state of the antimetastatic Ru(III) complex NAMI-A by interactions with human serum albumin.

The behaviour of the antimetastatic Ru(III) complex imidazolium [trans-RuCl₄(1H-imidazole)(DMSO-S)] (NAMI-A) under physiological conditions and its interactions with human serum albumin (hsA) have been studied using electron paramagnetic resonance spectroscopy (EPR). In physiological buffer at pH 7.4, these experiments demonstrate that the DMSO ligand is replaced rapidly by water, and spectra f...

متن کامل

Interaction of anticancer Ru(III) complexes with single stranded and duplex DNA model systems.

The interaction of the anticancer Ru(iii) complex AziRu - in comparison with its analogue NAMI-A, currently in advanced clinical trials as an antimetastatic agent - with DNA model systems, both single stranded and duplex oligonucleotides, was investigated using a combined approach, including absorption UV-vis spectroscopy, circular dichroism (CD) and electrospray mass spectrometry (ESI-MS) tech...

متن کامل

Synthesis, structural characterisation and solution chemistry of ruthenium(III) triazole-thiadiazine complexes.

Two ruthenium(III) complexes structurally similar to the anticancer compound NAMI were prepared: Na[RuCl4(DMSO)(L1)] ( 1) and Na[RuCl4(DMSO)(L2)] ( 2), where L1 and L2 are differently functionalised triazole-thiadiazine ligands. To facilitate the crystallisation of the complex anions, Na+ was substituted with the [bis(triphenylphosphoranylidene)ammonium] cation (PPN+), allowing the X-ray charac...

متن کامل

Biophysical and Molecular Docking Studies of Human Serum Albumin Interactions with a Potential Anticancer Pt(II) Complex

The interaction between [Pt(phen)(pyrr-dtc)]NO3 (where phen = 1,10-phenanthroline and pyrr-dtc =pyrrolidinedithiocarbamat) with human serum albumin (HSA) was studied by fluorescence, UV–vis absorption, circular dichroism (CD) spectroscopy and molecular docking technique under like physiological condition in Tris–HCl buffer solution at pH 7.4. UV-Vis absorption spectroscopy indicates that the pro...

متن کامل

Molecular dynamics simulation and docking studies on the binding properties of several anticancer drugs to human serum albumin

Disposition and transportation of anticancer drugs by human serum albumin (HSA) affects their bioavailability, distribution and elimination. In this study, the interaction of a set of anticancer drugs with HSA was investigated by molecular dynamics and molecular docking simulations. The drugs' activities were analyzed according to their docking scores, binding sites and structural descriptors. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 44 40  شماره 

صفحات  -

تاریخ انتشار 2015